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Abstract

We discuss vibration suppression in a lumped torsional system using a wave-absorption filter. The controlled system is

that treated previously [M. Saigo, et al., Torsional vibration suppression by wave-absorption control with imaginary

system, Journal of Sound and Vibration 270 (2004) 657–672] in which an imaginary wave-propagation system similar to

the real controlled system is computed online. Here, we introduce a new control algorithm we developed, using a modified

impedance-matching wave-absorption filter taking the boundary condition into consideration, and that requires no online

computation of an imaginary system with initialization. Our new wave filter provides much better control performance

than the imaginary system computed online. The filter’s basic concept enables the dynamics of the end element to which a

control actuator is connected to meet the wave solution by control force. Experiments for 2 and 3 dof systems confirm that

the wave-absorption control filter realizes traveling wave characteristics accurately without reflecting and shows very high

control performance in vibration suppression.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Active vibration suppression in structures and mechanical systems consists primarily of modal vibration
control based on natural vibration modes, i.e., the system’s standing-wave state, and wave-absorption control
based on vibration-energy absorption by reflection wave canceling, i.e., the system’s progressive-wave state.
Wave absorption control has advantages over modal vibration control, which is used widely in different fields.
The wave-absorption process is conducted based on local wave-propagation properties, with no need to deal
with a total system, and is applicable to any system even if only information on the structure where waves
propagate is known. Wave-absorption control, however, requires information on where waves propagate,
making it suitable for one-dimensional (1D) structures or assemblies of 1D elements. Wave control in 1D
structures [1–11] has been widely studied in continuous structures such as beams and truss structures, but
less in lumped systems [11–13]. O’Connor and Lang [11] used a lumped parameter spring-and-mass system
to model a flexible arm, while Saigo et al. [12–14] studied a multiple-pendulums system and a multiple
degree-of-freedom (dof) lumped torsional system.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

Ki, K spring constant of ith torsional bar for
nonuniform and uniform systems

Ii, I moment of inertia of ith disc for nonuni-
form and uniform systems

t time
Ti disturbance torque on ith disc
fi angle of ith torsional bar
o0 specific frequency for homogeneous sys-

tem ð¼
ffiffiffiffiffiffiffiffiffi
K=I

p
Þ
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Online computer simulation of a large dof structural system having properties similar to the actual
controlled system has been used to avoid treating an irrationonal transfer function inherently existed in wave
propagation [12–14]. This ‘‘imaginary’’ system is connected virtually to the real system by an actuator
satisfying the continuity condition between real and imaginary systems. This strategy realizes an infinite
structural system free of wave reflections in the controlled real system if a suitable process is conducted to clear
vibrating energy in the imaginary system at appropriate timing. When the imaginary system does not have
enough degrees of freedom to absorb all vibration energy of the real system, the imaginary system will give the
solution which reflects at the end of the imaginary system. This solution returns to the real system vibration
energy absorbed from the real system before. For this, the process initializes the imaginary system where
deflection and velocity of all elements are set to zero except for the end element of the connecting side.
Initialization should be done before the reflecting wave from the end of the imaginary system reaches the real
system. Control effectiveness in a lumped torsional system has been shown both theoretically and experimentally
[14], but control performance in experiments was not satisfactory. This was due primarily to the initialization
reaction, i.e., the successive connection of the initialized imaginary system to the real system makes a torque
jump leading to computation error in the imaginary system due to suddenly increased amplitude.

We studied the impedance-matching transfer function of wave-absorption control to a lumped torsional
system needing no initialization. The equation of motion of the end element of a rotating torsional system
corresponds to that of a spring-and-mass system with a fixed boundary condition to which the usual
impedance-matching condition cannot be applied. For this, we investigate two strategies—a new imaginary
system having an impedance-matching condition at the end element and a modified impedance-matching
condition directly applicable to the real end element of the fixed boundary condition. The characteristic wave
solution, an irrational function, is approximated with fractional polynomials by curve fitting and used to make
up a so-called IIR filter with impedance-matching condition. We also conducted experiments for 2 and 3 dof
systems.

2. Control law

2.1. Equation of motion

The 1D torsional vibration system considered consists of torsional bars and rigid discs (Fig. 1). Rigid lines
represent the real system and dotted lines the imaginary system. Our control compensates for torque
Kmþ1fmþ1, i.e., generated at the (imaginary) connecting torsional bar between real and imaginary discs, by an
actuator, and absorbs vibration energy in the real system propagated to the imaginary system.

Consider a (m+n)-dof torsional vibration system in which the controlled (real) system is m-dof and the
imaginary system n-dof. The equation of motion is expressed as

€f1 þ
K1

I0;1
f1 �

K2

I1
f2 ¼ �

T0

I0

€fm �
Km�1

Im�1
fm�1 þ

Km

Im�1;m
fm �

Kmþ1

Im

fmþ1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
a

¼ �
Tm�1

Im�1
þ

Tm

Im
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Fig. 1. Real and imaginary torsional vibration systems connected.
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€fmþ1 �
Km

Im

fm|{z}
b

þ
Kmþ1

Im;mþ1
fmþ1 �

Kmþ2

Imþ1
fmþ2 ¼ 0

. . . . . .

€fmþn �
Kmþn�1

Imþn�1
fmþn�1 þ

Kmþn

Imþn�1;mþn

fmþn ¼ 0

1

I i;j
�

1

I i

þ
1

I j

, ð1Þ

where Ki; I i;fi are the spring constant of ith torsional bar, the moment of inertia of ith rigid disc,
and the torsional angle of ith torsional bar. External disturbance on the ith disc is expressed as Ti.
The moment of inertia of the left-end disc and the external disturbance on it are represented by I0
and T0.

Vibration energy in the real system propagates to the imaginary system based on propagation properties
when Eq. (1) is satisfied. Elements whose suffixes exceed (m+1) in Eq. (1) are virtual, so we compensate for the
term relating to fm+1 (shown �|{z}

a

in Eq. (1)) as control acceleration. Previously [14], equations of motion

including variables whose suffixes exceed (m+1) were solved by online calculation, where variable fm (shown
�|{z}
b

in Eq. (1)) is measured.

In this paper, the imaginary system with impedance-matching characteristic at the end element is
introduced, which gives a transfer function with no initialization. Because the transfer function uses a wave
solution, the imaginary system is confined as a uniform system whose wave solution is known. The real system
is not required to be uniform.

2.2. Wave-absorption condition

The ith equation of motion of the uniform system with no external disturbance and influence of boundary
condition (called as an inner element) is

€fi � o2
0fi�1 þ 2o2

0fi � o2
0fiþ1 ¼ 0 ðia1; 0Þ; o2

0 ¼ K=I . (2)

Laplace transformation of Eq. (2) is

�Fi�1ðsÞ þ ð2þ s2=o2
0ÞFiðsÞ � Fiþ1ðsÞ ¼ 0, (3)
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where Fi(s) is Laplace transformation of fi. Substituting general solution Fi(s) ¼ b(s)i (Fi+1(s) ¼ b(s)Fi(s))
into Eq. (3), we obtain the specific roots

bðsÞ ¼ 1þ s2=ð2o2
0Þ � s=o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2=ð4o2

0Þ

q
� 1þ s2=ð2o2

0Þ � s=o0

ffiffiffiffiffiffiffiffiffiffi
b0ðsÞ

q
� bðsÞþ;bðsÞ� (4)

and the general solution

FiðsÞ ¼ c1ðsÞðb
þ
Þ
i
þ c2ðsÞðb

�
Þ
i
� Fþi ðsÞ þ F�i ðsÞ, (5)

where c1(s) and c2(s) are arbitrary constants determined by boundary conditions.
Introducing s ¼ jo (j is the imaginary unit), when b0(jo) in Eq. (4) is positive, b+(jo) represents a positive

propagating solution to higer numbered elements and b�(jo) a negative propagating solution to lower
numbered elements. The condition of existence of propagating solution 0pb0(jo) gives the limit frequency as

op2
ffiffiffiffiffiffiffiffiffi
K=I

p
� 2o0. (6)

Eq. (6) shows that the torsional bar-and-rigid disc wave-absorption controller must have a specific
frequency o0 ¼

ffiffiffiffiffiffiffiffiffi
K=I

p
, i.e., greater than half of the disturbance frequency of the controlled system. From

Eq. (4), we obtain

bþð�Þ
�� �� ¼ 1 (7)

which means that the steady-state wave amplitude is constant regardless of frequency.
Wave-absorption control at the boundary is simpler than elsewhere in the system because waves from

outside of the boundary need not be considered. Impedance-matching control is a well-known wave-
absorption strategy at the boundary [15,16], and so we study the impedance-matching condition for a lumped
torsional system. Because the equation of motion for a uniform torsional bar-and-rigid disc is the same as that
of a uniform spring-and-mass system (Fig. 2), we use the latter to make it easier to take impedance into
consideration. We regard K,I, torsional spring constant and moment of inertia of torsional system, as k,m,
spring constant and mass of spring-and-mass system mathematically.

The mechanical impedance for the positive propagating solution is defined as the ratio of the spring force
between ith and (i+1)th masses to the velocity of ith mass as

zþðsÞ ¼ K
FiðsÞ � Fiþ1ðsÞ

sFiðsÞ
¼ K
ð1� bþÞ

s
¼ K z̄

þ
ðsÞ. (8)

Substituting solution b+ given by Eq. (4) into Eq. (8), we obtain

zþðsÞ ¼
ffiffiffiffiffiffi
IK
p

�jo=ð2o0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� o2=ð4o2

0Þ

q� �
. (9)

Using Eq. (8), Eq. (3) is transformed as

ð1þ s2=o2
0ÞFi � Fi�1 ¼ Fiþ1 � Fi ¼ ðb

þ
� 1ÞFi ¼ �z̄

þ
sFi. (10)

When the right-hand term �z̄
þ

sFm, putting i ¼ m in Eq. (10), is used as an impedance-matching wave control
force at the end element, the equation of motion of the end element should satisfy Eq. (11) to be in a positive
k (K ) m (I ) k m

(a)

(b)

�1 �i−1 �i �i+1 �m

Fig. 2. Uniform mass-and-spring system equivalent to torsional system: (a) fixed–free boundary and (b) fixed–fixed boundary.
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wave propagating state

ð1þ s2=o2
0ÞFm � Fm�1 ¼ 0. (11)

The equation of motion of the end element of the free boundary condition (Fig. 2(a)) satisfies the above
relation, but that of the fixed boundary condition (Fig. 2(b)) does not, shown as

ð2þ s2=o2
0ÞFm � Fm�1 ¼ 0. (12)

From Eq. (1), the end element of a uniform torsional system corresponds to Eq. (12), so we must consider the
generalized impedance-matching condition of wave absorption applied to the end element of the fixed
boundary condition. The reason why an uniform torsional vibration system, with both ends free, corresponds
to a fixed–fixed spring-and-mass system is that Eq. (1) is represented by a torsional rather than a rotation
angle, that is, rigid rotation disappears in Eq. (1). As seen from the above consideration, the wave-absorption
condition at the end element is obtained by making wave solution b+ obtained from the equation of motion of
an inner element satisfy that of the end element. Taking this into consideration, Eq. (10), also putting i ¼ m, is
transformed as

2þ s2=o2
0

� �
FmðsÞ � Fm�1ðsÞ ¼ ð�z̄

þ
þ 1=sÞ � sFmðsÞ ¼ bþFmðsÞ. (13)

Since the left-hand side of Eq. (13) is the same as Eq. (12), Eq. (13) represents the equation of motion of the
end element when ð�z̄

þ
þ 1=sÞsFmðsÞ is the control term. Substituting relation bþFmðsÞ ¼ Fmþ1ðsÞ into

Eq. (13) apparently gives the same relation of three adjacent elements as the equation of motion of an inner
element.

The wave-absorption condition on an arbitrary element is therefore equivalent to satisfying the wave
progressive solution in its equation of motion. The so-called usual impedance-matching condition is a specific
case of the end element of the free boundary condition.

As Eqs. (10) and (13) show, it is more convenient for the lumped torsional system considered here to deal
with the relation of control force to displacement rather than to velocity, i.e., stiffness or compliance rather
than impedance.

Eqs. (10) and (13) give two wave-absorption strategies for a lumped torsional system—one to apply the
generalized impedance-matching condition (GIP) given by Eq. (13) and the other to introduce an imaginary
system with an impedance-matching condition at the end (IIP) where the free boundary condition is
conveniently used. GIP is better than IIP method for a uniform controlled system, because a smaller order
controller is constructed. When the controlled system is nonuniform, however, we must introduce an
imaginary system to construct a virtual uniform system. In this case, a 1 dof imaginary system with
k m km

Imaginary
System

 

Impedance Matching
Force : ��m+1

k m km

: Control Force(a)

(b)

�m+1

k�m+1 : Control Force

�m

�m�2�1

�m�2�1

k (��m−�m)
.

Fig. 3. GIP and IIP method: (a) GIP and (b) IIP.
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impedance-matching characteristic constructs a wave-absorption system because a 2 dof uniform system
constructed by 1 real and 1 dof imaginary systems satisfy Eq. (11) regarding m as m+1. If a nonuniform
controlled system has two same end-side elements, we use GIP because Eq. (13) is satisfied. Again, wave-
absorption control for a lumped system can be constructed for any system at the end element. Fig. 3 shows
these strategies schematically.

Fig. 4 shows the response of a 3 dof uniform spring-and-mass system for a sinusoidal displacement input at
the left end element 1 together with wave absorption control at the right end element 3 and without control.
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The controlled amplitude remains constant corresponding to the input amplitude up to wave propagation
limit frequency (o=o0 ¼ 2). The controlled phase of element 1 changes from 01 to �1801 and element 3 from 0
to �5401 up to the wave propagation limit frequency. The uncontrolled phases of elements 1 and 3 also change
from 01 to �1801 and 01 to �5401 stepwise. Here, the uncontrolled phase is depicted as continuous functions,
unusual in vibration textbooks, which helps in understanding wave-controlled characteristics—phase shift
characteristics inherently exist in the spring-and-mass vibration system. The uncontrolled phase and amplitude
approach the wave controlled one if a velocity-dependent normal damping is introduced in place of wave-
absorption control (Fig. 5), with damping coefficient equivalent to z ¼

ffiffiffiffiffiffi
IK
p

used.

2.3. Wave-absoption control filter

The wave-absorption control filter is designed for a uniform torsional system whose parameters are
the same as those of the experiment detailed in the next section. Characteristic root b+(s) is approximated by
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six-order fractional polynomials. Fig. 6 shows b+(s) and the approximated representation for frequency o using
the spring constant of torsional bar K ¼ 21:4Nm and moment of inertia I ¼ 0:0123 kgm2 (o0 ¼ 6:64Hz). Gain
is constant at unity and the phase changes from 0 to �1801. The approximated function is obtained by the
invfreqs function of MATLAB, which agrees well with original function b+(jo) in all frequency ranges except
for the vicinity of wave propagation limit frequency 2o0. By zero-order hold z-transformation of this
approximated transfer function with sampling periods 1 and 4ms, an IIR digital control filter for GIP is
obtained (Fig. 7). This transfer function was calculated by using the freqz function of MATLAB.

Similarly, an imaginary system with impedance-matching condition is designed as an IIR digital filter.
Because the 1 dof imaginary system having a free end condition is sufficient for impedance-matched wave
absorption, the transfer function is expressed as

K
Fmþ1ðsÞ

FmðsÞ
¼ K 1þ s2=o2

0 þ ðs=o0Þz
þ
ðsÞ=

ffiffiffiffiffiffi
IK
ph i�1

. (14)

By zero-order hold z-transformation of Eq. (14) with sampling period 1 and 4ms, we obtain an IIR digital
filter (Fig. 8) with approximation errors at o0po for the 4ms sampling period. Since no characteristics of
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such errors are seen in Fig. 6, this may be due to resonance phenomena of the 1 dof imaginary system
resembling characteristics in Fig. 5. By losing the wave propagation compensation characteristic, the roughly
approximated controller approaches normal damping.

3. Experiments

We have conducted experiments by using the IIR filters of GIP and IIP (Fig. 9). The uniform controlled
vibration system consists of discs 200mm in diameter and 20mm thick and torsional bars 4mm in diameter
and 100mm long for 2 and 3 dof uniform systems. AC servomotors are used for drive and control. The drive
motor has a rated torque of 0.9Nm and a rated speed of 3000 rev/min and the control motor has a rated
torque of 0.16Nm and a rated speed of 3000 rev/min. The measurement system consists of rotary encoders, a
torsional angel converter, low- and high-pass filters, and a personal computer (CPU clock: 333MHz). Torque
disturbance is applied by torque fluctuation of the AC drive motor in constant speed mode, which is 4 times, 2
times, and 1 time per rotation, so, resonance may occur at a rotation speed of 1

4
, 1
2
, and 1

1
of the natural
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frequency. Torque magnitude cannot be adjusted. Experiments are conducted for 2 and 3 dof with a sampling
period of 4ms.

Figs. 10 and 11 show controlled and uncontrolled amplitudes of 2 dof uniform system by GIP and IIP, with
(a) at the first resonance frequency and (b) at the second resonance frequency. Amplitudes are suppressed
considerably by control and phase shifts between f1 and f2 of the controlled amplitudes are seen. Figs. 12 and
13 show controlled and uncontrolled amplitudes of 3 dof uniform system by GIP and IIP, with (a) at the first
resonance frequency, (b) at the second resonance frequency, and (c) at the third resonance frequency.
Amplitudes are suppressed considerably by control and the phase between f1 and f3 of controlled amplitudes
is shifted. These results are greatly superior to those produced by online simulation of the imaginary system in
Ref. [14] (Appendix A), which confirm the high control performance of the developed wave-absorption
control filter. Fig. 14 shows wave propagation characteristic b+ in the controlled system. The experimental
phase shift is obtained by using a band-pass filter at the corresponding frequency. The phase shift for the 3 dof
system is calculated as half of the shift between f1 and f3. The observed phase shift angle between adjoining
elements agrees well with Eq. (4)—further evidence of the wave control performance of the developed control
filter. Although control performance between GIP and IIP differs in Figs. 7 and 8, we can see no marked
difference in experiments (Figs. 10–14).

4. Conclusions

We have developed wave-absorption control filters for the end element of a lumped torsional system and
have demonstrated its effectiveness in experiments, with the following major results:
(1)
 The wave-absorption filter for the end element of a lumped torsional system has been developed by using
the characteristic root of the equation of motion of an inner element with no influence of boundary
condition. It is quite useful for a uniform controlled system experimentally, and it is also applicable to a
nonuniform system with two same end elements.
(2)
 The wave-absorption filter for the end element of a lumped torsional system constructed by using the 1 dof
imaginary system and impedance-matching condition is useful for both a uniform system and a
nonuniform system.
(3)
 The impedance-matching condition of wave-absorption control at the end element is a specific condition
for a free end boundary condition, and the general wave-absorption condition is to satisfy a characteristic
root on the equation of motion of the end element.
(4)
 The wave-absorption control filter constructed using only the characteristic root of the equation of motion
of an inner element is more suitable than that using the characteristic root and the imaginary system
because of the lesser order of the transfer function with practically no loss of control performance.
(5)
 The characteristic root of wave propagation is usefully approximated by six-order fractional polynomials
to construct digital control filters.
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Fig. A1. Timing chart of 3 dof real system experiment at a speed of (a) a quarter of first resonance, (b) first resonance, (c) second

resonance, and (d) third resonance.
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Appendix A

Experimental results of wave absorption control with online simulation of imaginary system [14] are shown
below for comparison with those in this paper (Fig. A1).
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